Lectures Notes Algorithms and Preconditioning in PDE-Constrained Optimization

نویسنده

  • R. Herzog
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A preconditioning technique for a class of PDE-constrained optimization problems

We investigate the use of a preconditioning technique for solving linear systems of saddle point type arising from the application of an inexact Gauss–Newton scheme to PDE-constrained optimization problems with a hyperbolic constraint. The preconditioner is of block triangular form and involves diagonal perturbations of the (approximate) Hessian to insure nonsingularity and an approximate Schur...

متن کامل

All-at-once preconditioning in PDE-constrained optimization

The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how...

متن کامل

Towards Matrix-Free AD-Based Preconditioning of KKT Systems in PDE-Constrained Optimization

The presented approach aims at solving an equality constrained, finite-dimensional optimization problem, where the constraints arise from the discretization of some partial differential equation (PDE) on a given space grid. For this purpose, a stationary point of the Lagrangian is computed using Newton’s method, which requires the repeated solution of KKT systems. The proposed algorithm focuses...

متن کامل

Operator Preconditioning for a Class of Inequality Constrained Optimal Control Problems

We propose and analyze two strategies for preconditioning linear operator equations that arise in PDE constrained optimal control in the framework of conjugate gradient methods. Our particular focus is on control or state constrained problems, where we consider the question of robustness with respect to critical parameters. We construct a preconditioner that yields favorable robustness properti...

متن کامل

Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver

Large scale optimization of systems governed by partial differential equations (PDEs) is a frontier problem in scientific computation. The state-of-the-art for such problems is reduced quasi-Newton sequential quadratic programming (SQP) methods. These methods take full advantage of existing PDE solver technology and parallelize well. However, their algorithmic scalability is questionable; for c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012